# Search for Long-Lived Particles Decaying to the Z<sup>0</sup> Boson

Adam Scott CDF/UCSB

DPF 2004
Direct Searches For New Physics

#### Motivation

- What I want:
  - Same as what everyone wants
  - To find what physics lies beyond the Standard Model
- Alright, but how?
- Many possible theoretical and experimental signatures to choose from
  - Theoretical:
    - Higgs
    - SUSY
    - Extra dimensions
    - ...
  - Experimental:
    - photons
    - leptons
    - neutrinos ( $E_T$ )
    - quarks (jets)
    - gauge bosons: Z<sup>0</sup> and W<sup>±</sup>

#### What We Do

- Our approach is to look at the gauge bosons for evidence of new physics
- We focus on new physics that couples to the  $\mathbb{Z}^0$
- $X \rightarrow Z^0$ 
  - Theoretically motivated
    - Might expect to see new physics to couple to heavy particles more strongly than the light ones
  - Experimentally clean
    - Two leptons that reconstruct to the Z<sup>0</sup> mass has little background
    - The dominant background is from Standard Model Z<sup>0</sup>'s

#### Standard Model Z<sup>0</sup>

- To be sensitive to X → Z<sup>0</sup>, must distinguish the Z<sup>0</sup> from new physics with the Standard Model Z<sup>0</sup>
- What do Standard Model Z<sup>0</sup> events look like?
  - $Z^0$  has low  $p_T$
  - Events have little other activity in them (no jets, no  $\mathbf{L}_{T}$ )
  - Z<sup>0</sup> has short lifetime



## New Physics Couplings to Z<sup>0</sup>

- To be sensitive to X → Z<sup>0</sup>, must distinguish the Z<sup>0</sup> from new physics with the Standard Model Z<sup>0</sup>
- What do Standard Model Z<sup>0</sup> events look like?
  - $Z^0$  has low  $p_T$
  - Events have little other activity in them (no jets, no  $\not$ <sub>T</sub>)
  - Z<sup>0</sup> has short lifetime
- What would Z<sup>0</sup> new physics events look like?
  - $Z^0$  has  $high p_T$
  - Events *a lot* of other activity (many jets, large  $\mathbf{L}_{T}$ )
  - Z<sup>0</sup> parents (might) have *long* lifetime





## Long-Lived Particle Decaying to Z<sup>0</sup>

- Experimentally clean
  - Vertex dileptons from Z<sup>0</sup>'s
  - Negligible background from actual displaced vertices
  - Dominant background is from tracking mistakes
- Theoretically motivated
  - Existing (and perhaps many non-existing) models predict a long-lived Z<sup>0</sup> parent







#### Let's Do It!

- Convention:
  - $L_{xy}$  = distance in transverse plane from beam to dilepton intersection
- Use transverse quantities because they are easier to measure
- $L_{xy}$  sign definition
- Motivation:
  - Tracking mistakes are symmetric in  $L_{xy}$
  - Signal has predominantly positive  $L_{xy}$
- Search for excess above background at positive  $L_{xy}$
- Negative L<sub>xy</sub> gives a cross-check of the background
- Use  $Z^0 \rightarrow \mu\mu$  channel
- Plan to use  $Z^0 \rightarrow ee$  channel next





#### Selection Criteria

- Selection Motivation:
  - Clean sample of Z<sup>0</sup>'s
  - Well-measured tracks
  - High efficiency for signal
  - Look for large L<sub>xy</sub>
- Calibrated cuts and  $L_{xy}$  calculation with  $J/\psi \rightarrow \mu\mu$ 's
  - Displaced vertices from B meson decay
- Two important cuts:
  - $\Delta \phi$  cut
  - Z<sup>0</sup> boson p<sub>T</sub> cut

| Two well-identified high p <sub>T</sub> muons               |  |  |
|-------------------------------------------------------------|--|--|
| Within $Z^0$ mass peak: $81 < M_{\mu\mu} < 101 \text{ GeV}$ |  |  |
| Tracking quality cuts to reduce mistakes                    |  |  |
| Cosmic Rejection Cuts                                       |  |  |
|                                                             |  |  |
| $L_{xy} > 0.1 \text{ cm}$                                   |  |  |
|                                                             |  |  |
| $Z^0$ boson $p_T > 30 \text{ GeV}$                          |  |  |
| $L_{xy} > 0.03$ cm                                          |  |  |

## $\Delta \phi$ cut

- Due to the back-to-back nature of  $Z^0$  events, even small mistakes in tracking can lead to large mistakes in  $L_{xy}$
- Cut at:

 $\Delta \phi < 175 \deg$ 

- Rejects 99% of large L<sub>xy</sub> tracking mistake background above 0.1 cm
- 50 % efficient on Standard Model Z<sup>0</sup>'s
- 90 % efficient on signal sample



# Z<sup>0</sup> Boson p<sub>T</sub> Cut

- Can use the Z<sup>0</sup> transverse momentum to reject Standard Model background
- Increases sensitivity to smaller lifetimes
- Cut at:

$$Z^0 p_T > 30 \; GeV$$
 
$$L_{xv} > 0.03 \; cm$$

- Do not optimize heavily to retain model independence
- Use it as optional cut
  - Look at L<sub>xy</sub> distribution with and without the cut



## Acceptance × Efficiency

- Have calculated acceptance × efficiency of signal
  - Used a b' model
  - Note: Assumes BR(b'  $\rightarrow$  b Z<sup>0</sup>) = 1, and includes BR(Z  $\rightarrow \mu\mu$ )





## Backgrounds

- Negligible backgrounds from:
  - Cosmics
  - QCD (semileptonic B decays to muons)
- Dominant background from:
  - Tracking mistakes from Standard Model Z<sup>0</sup> events
  - Difficult to measure
    - Use simulated Monte Carlo
    - $\bullet$  Can cross-check the background measurement with the data in the negative  $L_{xy}$  control region

|             | No $Z^0$ $p_T$ cut     | $Z^0 p_T > 30 \text{ GeV}$ |
|-------------|------------------------|----------------------------|
| Background: | $0.72 \pm 0.27$ events | $1.1 \pm 0.8$ events       |

#### The Data



- 2 events in signal region
- Background:  $0.72 \pm 0.27$  events
- No events is negative  $L_{xy}$  control region



- 3 events in signal region
- Background:  $1.1 \pm 0.8$  events
- No events is negative  $L_{xy}$  control region

## Signal Events

- Have 2+3 events in signal regions
- Can look at events displays to find other information consistent with the signal or background hypothesis
- In the case of the signal:
  - Should have other activity in the event
  - Additional jets, etc.
  - In the case of the b'  $\rightarrow$  b  $\mathbb{Z}^0$  signal:
    - b jets
    - Jets from other Z<sup>0</sup>

 $L_{xy} > 0.1$  cm, without the  $Z^0$   $p_T$  cut



CDF Run II Preliminary

run 155365 event 1953250

 $L_{xy} > 0.1$  cm, without the  $Z^0$   $p_T$  cut

#### CDF Run II Preliminary



 $L_{xy} > 0.03$  cm, with the  $Z^0$   $p_T > 30$  GeV cut



CDF Run II Preliminary

run 162462 event 880227

 $L_{xy} > 0.03$  cm, with the  $Z^0$   $p_T > 30$  GeV cut

#### CDF Run II Preliminary



## Limit

- No significant excess of signal above background
- Set a 95 % confidence limit on the b' model using Pythia at LO



## Limit – Lifetime vs. Mass

• At  $m_{b'} = 150$  GeV, exclude at 95 % confidence:

$$2.0 < c\tau < 70 \text{ mm}$$
  
 $0.55 < c\tau < 52 \text{ mm}$ 

- At  $c\tau = 10$  mm, exclude at 95 % confidence:  $m_b$ , < 174 GeV
- Model only valid if  $m_{b'} < m_{t}$
- More generally, we exclude a region in mass and lifetime parameter space



#### Conclusions

- We have completed a search and set a limit on long-lived particles decaying to Z<sup>0</sup>'s at CDF in the dimuon channel
- Will now look at dielectrons
  - Will use experience gained from dimuon channel
  - Have greater acceptance for electrons
- Can do more searches using Z<sup>0</sup> bosons!
- And a lot more tools to use...
- What would Z<sup>0</sup> new physics events look like?
  - $Z^0$  has  $high p_T$
  - Events a lot of other activity (many jets, large E<sub>T</sub>)
  - Z<sup>0</sup> parents (might) have *long* lifetime